Compilers

Local Optimization
Local Optimization

- The simplest form of optimization
- Optimize one basic block
 - No need to analyze the whole procedure body
• Some statements can be deleted
 \[x := x + 0 \]
 \[x := x \times 1 \]

• Some statements can be simplified
 \[x := x \times 0 \implies x := 0 \]
 \[y := y \times^{2} \implies y := y \times y \]
 \[x := x \times 8 \implies x := x \ll 3 \]
 \[x := x \times 15 \implies t := x \ll 4; x := t - x \]

(on some machines \(\ll \) is faster than \(\times \); but not on all!)
Operations on constants can be computed at compile time

- If there is a statement \(x := y \text{ op } z \)
- And \(y \) and \(z \) are constants
- Then \(y \text{ op } z \) can be computed at compile time

Example: \(x := 2 + 2 \Rightarrow x := 4 \)

Example: if \(2 < 0 \) jump L can be deleted
• Constant folding can be dangerous.
Local Optimization

- **Eliminate unreachable basic blocks:**
 - Code that is unreachable from the initial block
 - E.g., basic blocks that are not the target of any jump or “fall through” from a conditional

- **Removing unreachable code makes the program smaller**
 - And sometimes also faster
 - Due to memory cache effects
 - Increased spatial locality
• Why would unreachable basic blocks occur?
• Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment

• Rewrite intermediate code in *single assignment* form

\[
\begin{align*}
 x &:= z + y \\
 a &:= x \quad \Rightarrow \quad a := b \\
 x &:= 2 \times x \\
 x &:= 2 \times b
\end{align*}
\]

(b is a fresh register)

– More complicated in general, due to loops
Local Optimization

- If
 - Basic block is in single assignment form
 - A definition $x :=$ is the first use of x in a block
- Then
 - When two assignments have the same rhs, they compute the same value
- Example:
 - $x := y + z$
 - $x := y + z$
 - $w := y + z$ \Rightarrow $w := x$
 - (the values of x, y, and z do not change in the ... code)
• If \(w := x \) appears in a block, replace subsequent uses of \(w \) with uses of \(x \)
 – Assumes single assignment form

• Example:
 \[
 b := z + y \\
 a := b \\
 x := 2 * a
 \]
 \[
 b := z + y \\
 a := b \\
 x := 2 * b
 \]

• Only useful for enabling other optimizations
 – Constant folding
 – Dead code elimination
• Example:

\[
a := 5 \\
x := 2 \times a \\
y := x + 6 \\
t := x \times y
\]

\[
\Rightarrow \\
a := 5 \\
x := 10 \\
y := 16 \\
t := x \ll 4
\]
Local Optimization

If
\[w := \text{rhs} \] appears in a basic block
\[w \] does not appear anywhere else in the program

Then

the statement \(w := \text{rhs} \) is dead and can be eliminated
– \text{Dead} = \text{does not contribute to the program’s result}

Example: \((a \text{ is not used anywhere else}) \)
\[
\begin{align*}
x &:= z + y \\
b &:= z + y \\
b &:= z + y \\
a &:= x & \Rightarrow & a &:= b & \Rightarrow & x &:= 2 \times b \\
x &:= 2 \times a & \Rightarrow & x &:= 2 \times b
\end{align*}
\]
• Each local optimization does little by itself

• Typically optimizations interact
 – Performing one optimization enables another

• Optimizing compilers repeat optimizations until no improvement is possible
 – The optimizer can also be stopped at any point to limit compilation time
• Initial code:

\[
\begin{align*}
 a & := x ** 2 \\
 b & := 3 \\
 c & := x \\
 d & := c * c \\
 e & := b * 2 \\
 f & := a + d \\
 g & := e * f
\end{align*}
\]
• Algebraic optimization:

 \[
 \begin{align*}
 a & := x \times 2 \\
 b & := 3 \\
 c & := x \\
 d & := c \times c \\
 e & := b \times 2 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
• **Algebraic optimization:**

\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= c \times c \\
e &:= b \ll 1 \\
f &:= a + d \\
g &:= e \times f
\end{align*}
\]
• Copy propagation:

a := x \times x
b := 3
c := x
d := c \times c
e := b \ll 1
f := a + d
g := e \times f
Local Optimization

- Copy propagation:

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 3 \ll 1 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
• **Constant folding:**

\[
\begin{align*}
 a &:= x \times x \\
 b &:= 3 \\
 c &:= x \\
 d &:= x \times x \\
 e &:= 3 \ll 1 \\
 f &:= a + d \\
 g &:= e \times f
\end{align*}
\]
• **Constant folding:**

\[
\begin{align*}
 a &:= x \times x \\
 b &:= 3 \\
 c &:= x \\
 d &:= x \times x \\
 e &:= 6 \\
 f &:= a + d \\
 g &:= e \times f
\end{align*}
\]
Local Optimization

- **Common subexpression elimination:**

  ```
  a := x * x
  b := 3
  c := x
  d := x * x
  e := 6
  f := a + d
  g := e * f
  ```
• Common subexpression elimination:

\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= a \\
e &:= 6 \\
f &:= a + d \\
g &:= e \times f
\end{align*}
\]
• Copy propagation:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := a \\
e & := 6 \\
f & := a + d \\
g & := e \times f
\end{align*}
\]
• Copy propagation:

 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f
Local Optimization

- **Dead code elimination:**

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := a \\
 e & := 6 \\
 f & := a + a \\
 g & := 6 \times f
 \end{align*}
 \]
Local Optimization

- Dead code elimination:

 \[
 a := x \times x
 \]

 \[
 f := a + a \\
 g := 6 \times f
 \]

- This is the final form
Which of the following are valid local optimizations for the given basic block? Assume that only \(g \) and \(x \) are referenced outside of this basic block.

1. Copy propagation: Line 4 becomes \(d := a \times b \).
2. Common subexpression elimination:
 Line 5 becomes \(e := d \).
3. Dead code elimination: Line 3 is removed.
4. After many rounds of valid optimizations, the entire block can be reduced to \(g := 5 \).